
Date: 21 / 11 / 2024 Duration: 90 minutes

Student name: ...

Blockchain Fundamentals - Midterm Exam 1 (Practical A)

Task 1 (10%)

Construct aMerkle tree from the following input data points:

● satoshi

● laszlo

● gavin

Use the SHA-256 algorithm in the process, and briefly describe the steps you took.

Task 2 (30%)

In this task, you will need to code the basic logic of the card gameUno.

In case you have not played the game before, here is a breakdown of the basic rules (that you will

need for the task). Uno is a turn-based card game in which each player is dealt 7 cards. The cards

are colored in one of the four colors: red, green, blue and yellow, and have numbers from 0

to 9 (inclusive) on them. On their turn, a player has to put down (play) one card which is

either of the same color as the last played card (but has a different number), or has the

same number on it as the last played card (but a different color). For example, if Player 1

plays a red 9, Player 2 has to either:

● play any other red card

● play a 9 of a different color (green, blue or yellow).

If the player has no matching cards, they have to draw a new card from the deck. The game

ends when one player has no cards left.

This is the main gist of how Uno is played. There are certain other rules and special cards, but

they are not important nor relevant for your task. Your task will be to simulate a basic

addition of players to the game, starting / ending of the game and card playing logic. You do

not need to implement decks, card drawing, player “hands”, nor any special cards.Make sure

to properly handle all requirements of certain functions.

Using Solidity, you need to do the following:

1. Create an enum Color to keep track of card colors: Red, Green, Blue, Yellow

2. Create a struct Card which will represent a played card.

a. A card is defined by a number (integer) and a color (enum).

3. Create a smart contract called Uno, which should keep track of the following

information:

a. an array of player addresses

1

Date: 21 / 11 / 2024 Duration: 90 minutes

Student name: ...

b. the last played card

c. whether the game has started or not

d. which player’s turn it is, represented by an integer (0 → player 1, 1 → player 2,

…)

e. the owner of the contract

4. Make sure that the following is done when the contract is first deployed:

a. Set the contract owner.

b. “Hard-code” the last played card as a red 1.

i. In the actual game, you would take the top card from the deck as your

starting card, but this is for simplicity’s sake.

5. Create a custommodifier that will prevent non-owners from calling certain functions.

6. Create a function addPlayer(address _player)

a. The function should take in an address of a new player to add to the game.

b. Player addresses should be stored in an arraymentioned in point 3.

c. A new player cannot be added if the game has already started.

d. Only the original owner should be able to call this function.

7. Create a function startGame()

a. The function shouldmark the game as started.

b. It should not be possible to start an already started game.

c. The game can only start if there are 2 or more players. If there are no players or

only 1 player, the game cannot start.

d. Only the original owner should be able to call this function.

8. Create a function endGame()

a. This function shouldmark the game as done.

b. It should not be possible to stop a game that has not started yet.

c. Only the original owner should be able to call this function.

9. Create a function playCard(Card memory _card)

a. This function should take in a Card struct which represents a card that a player

is playing on their turn.

i. Note: when testing this function in Remix IDE’s “Deploy” tab, you have

to use this format [1, 0] as input. The first number will be the card

number, and the second number will be the ordinal number of the color

from your enum (if your order is red, green, blue, yellow; 0 → red, 1 →
green, …). Hence, [1, 0] would be a red 1, [9, 1] is a green 9, etc.

b. A player cannot play a card if the game has not started.

c. Ensure that a played card is valid: the player’s card has to either have the same

number or the same color as the last played card (by the previous player).

d. Ensure that card numbers are valid (from 0 to 9 inclusive).

e. Ensure that a player cannot play outside of their turn. Players should take turns

based on the order in which they were added to the game by the owner.

2

Date: 21 / 11 / 2024 Duration: 90 minutes

Student name: ...

i. Players “play in turn” by calling the playCard() function from their

account, e.g. Player A calls playCard(), then Player B calls playCard(), etc.

ii. If players A, B and C are added in the order [B, A, C], they have to play in

that order; player C cannot play before player A.

iii. Note: think about what happens when the last player is done; the “cycle”

has to restart from the first player.

10. Deploy this contract to the Sepolia testnet, and verify it on Etherscan.

Task 3 (20%)

You are given the following smart contract. It is a simple borrowed books tracker for a local

library, which has a function for listing all the books you borrowed, borrowing a new book and

returning books. Each book has an ID, and upon returning a book, an event is emitted. The

constructor also contains a list of a few default borrowed books to get you started.

Your task is to create a simple UI for this smart contract. You can use any frontend

framework for the application, and choose between either Web3.js or Ethers.js as the

blockchain library. You do not have to style the application; it can be pure basic HTML.

You should do the following:

1. Deploy this contract to the Sepolia testnet, and verify it.

2. Create a simple login via MetaMask.

a. Initially, all application data should be hidden except a “Login with MetaMask”

button.

b. Once a user logs in, the login button should disappear.

3. Upon logging in, the user should see a list of their borrowed books.

a. Each book name should be displayed, followed by a button “Return book”.

4. Clicking on the “Return book” button next to the book name should call the function

on the contract to return that particular book.

5. Once a book has been returned, the contract will emit an event; your application should

listen for that event and upon receiving it, refresh the list of borrowed books.

Good luck.

3

n-gl.com

https://n-gl.com?utm_source=signature&utm_medium=pdf

